organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-[(3S)-3-Ethyl-1-methylazepan-3-yl]phenyl N-(4-fluorophenyl)carbamate

Jian Sun, Qiong Xie and Zhui-Bai Qiu*

Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China Correspondence e-mail: zbgiu@shmu.edu.cn

Received 10 May 2010; accepted 23 June 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.007 Å; R factor = 0.058; wR factor = 0.134; data-to-parameter ratio = 16.4.

The asymmetric unit of the title compound, C₂₂H₂₇FN₂O₂, a (-)-S-meptazinol derivative, contains two molecules. The azepane ring adopts a similar twist chair form in both molecules, while the dihedral angles between the two benzene rings are 88.17 (14) and 89.93 (14) $^{\circ}$ in the two molecules. The absolute configuration of the molecule was determined from the synthetic starting material. The crystal structure is stabilized by classical intermolecular N-H···O hydrogen bonds.

Related literature

For a related structure, see: Ennis et al. (1986).

Experimental

Crystal data

C22H27FN2O2 V = 2029.6 (5) Å³ $M_r = 370.46$ Z = 4Monoclinic, P21 Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ a = 11.3836 (17) Åb = 9.7368 (15) Å T = 295 Kc = 19.008 (3) Å $0.30 \times 0.28 \times 0.21 \text{ mm}$ $\beta = 105.564$ (3)

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.565, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	1 restraint
$wR(F^2) = 0.134$	H-atom parameters constrained
S = 0.83	$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$
7172 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
437 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -Н	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3A\cdotsO3^{i}$ N1-H1···O1 ⁱⁱ	0.86 0.86	2.15 2.16	3.007 (5) 3.002 (5)	177 167
	. 1		1 .	

10768 measured reflections

 $R_{\rm int} = 0.092$

7172 independent reflections

3625 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z; (ii) -x + 1, $y - \frac{1}{2}$, -z + 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was funded in part by the National Natural Science Foundation of China (grant No. 30801435).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2204).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Ennis, C., Haroun, F. & Lattimer, N. J. (1986). Pharm. Pharmacol. 38, 24-27. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, o1822 [doi:10.1107/S1600536810024396]

3-[(3S)-3-Ethyl-1-methylazepan-3-yl]phenyl N-(4-fluorophenyl)carbamate

J. Sun, Q. Xie and Z.-B. Qiu

Comment

(-)-Meptazinol is a moderate *AChE* inhibitor (Ennis *et al.*, 1986). Its absolute configuration was determined as *S* by X-ray crystal structures. The title compound is derived from (-)-*S*-meptazinol. We report here the molecular structure of the title compound in order to study the relationship between its structure and *AChE* inhibitory activity.

The molecular structure of the title compound presented on Fig. 1. The asymmetric unit has two molecules. The azepane ring adopts a similar twist chair form in both molecules. The dihedral angle between of two benzene rings is 88.17 (14)° and 89.93 (14)° in the first and second molecules respectively. The crystal structure is stabilized by classical intermolecular hydrogen bonds - N3—H3A···O3ⁱ and N1—H1···O1ⁱⁱ. Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*; (ii) -*x*+1, *y*-1/2, -*z*+1.

The absolute configuration of the azepane ring atom is C14(S), since the title compound was synthesized from (-)–*S*–meptazinol by esterification of the phenol group, which does not interfere with the chiral center C14.

Experimental

(-)–Meptazinol (200 mg, 0.86 mmol) was dissolved in anhydrous ether (5 ml) and a piece of Na metal (approximately 10 mg) was added. The mixture was stirred at room temperature for 30 min. Then 4–fluorophenylisocyanate (230 mg, 1.72 mmol) was added. The reaction mixture was continuously stirred for 4 h at room temperature and monitored by *TLC*. The precipitate was filtered off and the filtrate was evaporated to give yellow oil. The 10 ml H₂O was added and pH of the aqueous layer was adjusted to 3 by 1NHCl, washed with Et_2 O, and then pH was adjusted to 10 by saturated Na₂CO₃ aqueous solution. The resulting precipitate was filtered and washed with water three times. A white solid (yield 200 mg, 65.5%) was obtained. Single crystals suitable for X–ray analysis were obtained by slow evaporation of an acetonitrile solution.

Refinement

All H atoms were placed in the idealized positions with C—H = 0.93–0.96Å, and N—H = 0.86Å. The $U_{iso}(H) = 1.2-1.5$ $U_{eq}(C,N)$.

The 3164 Friedel pairs were merged in crystal refinement procedure.

Figures

Fig. 1. The molecular structure of title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

3-[(35)-3-Ethyl-1-methylazepan-3-yl]phenyl N-(4-fluorophenyl)carbamate

Crystal data

$C_{22}H_{27}FN_2O_2$	F(000) = 792
$M_r = 370.46$	$D_{\rm x} = 1.212 \ {\rm Mg \ m}^{-3}$
Monoclinic, P2 ₁	Mo Ka radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 1695 reflections
a = 11.3836 (17) Å	$\theta = 4.5 - 41.4^{\circ}$
b = 9.7368 (15) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 19.008 (3) Å	T = 295 K
$\beta = 105.564 \ (3)^{\circ}$	Prism, colourless
$V = 2029.6 (5) \text{ Å}^3$	$0.30\times0.28\times0.21~mm$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	7172 independent reflections
Radiation source: fine-focus sealed tube	3625 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.092$
ϕ and ω scans	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -13 \rightarrow 10$
$T_{\min} = 0.565, T_{\max} = 1.000$	$k = -11 \rightarrow 11$
10768 measured reflections	<i>l</i> = −23→22

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.058$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.134$	H-atom parameters constrained
<i>S</i> = 0.83	$w = 1/[\sigma^2(F_o^2) + (0.0436P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
7172 reflections	$(\Delta/\sigma)_{\text{max}} = 0.041$
437 parameters	$\Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between

s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
F1	0.0700 (2)	0.6112 (3)	0.22631 (14)	0.0913 (10)
F2	0.0725 (2)	0.3412 (3)	-0.27982 (14)	0.0860 (10)
N1	0.4300 (3)	0.4547 (4)	0.46958 (18)	0.0523 (10)
H1	0.4384	0.3671	0.4741	0.063*
N2	0.7713 (4)	0.3080 (5)	0.9169 (2)	0.0838 (12)
N3	0.4376 (3)	0.4940 (4)	-0.03739 (18)	0.0496 (10)
НЗА	0.4511	0.5810	-0.0344	0.060*
N4	0.8545 (5)	0.6054 (5)	0.4366 (2)	0.0949 (15)
01	0.5086 (3)	0.6544 (3)	0.52648 (15)	0.0577 (8)
O2	0.5776 (3)	0.4446 (3)	0.57009 (16)	0.0688 (10)
03	0.5055 (3)	0.2960 (3)	0.02499 (16)	0.0618 (9)
O4	0.5764 (3)	0.5055 (3)	0.06587 (15)	0.0621 (9)
C1	0.5050 (4)	0.5303 (5)	0.5213 (2)	0.0454 (12)
C2	0.3388 (2)	0.5017 (3)	0.40860 (12)	0.0481 (11)
C3	0.2979 (2)	0.4082 (2)	0.35204 (15)	0.0642 (14)
Н3	0.3315	0.3206	0.3555	0.077*
C4	0.2069 (3)	0.4458 (3)	0.29030 (13)	0.0732 (15)
H4	0.1796	0.3832	0.2525	0.088*
C5	0.1568 (2)	0.5767 (3)	0.28511 (13)	0.0612 (13)
C6	0.1976 (3)	0.6702 (3)	0.34168 (17)	0.0723 (15)
Н6	0.1641	0.7578	0.3382	0.087*
C7	0.2887 (3)	0.6327 (2)	0.40342 (14)	0.0677 (14)
H7	0.3160	0.6952	0.4413	0.081*
C8	0.6717 (2)	0.5014 (3)	0.62384 (13)	0.0554 (13)
C9	0.6660 (2)	0.4941 (3)	0.69589 (15)	0.0533 (12)
Н9	0.5959	0.4616	0.7065	0.064*
C10	0.7652 (2)	0.5355 (3)	0.75212 (11)	0.0478 (11)
C11	0.8701 (2)	0.5841 (3)	0.73631 (12)	0.0537 (12)
H11	0.9365	0.6117	0.7739	0.064*
C12	0.8758 (2)	0.5913 (3)	0.66426 (14)	0.0598 (12)
H12	0.9460	0.6238	0.6537	0.072*
C13	0.7766 (3)	0.5500 (3)	0.60803 (11)	0.0590 (13)
H13	0.7804	0.5548	0.5598	0.071*
C14	0.7592 (4)	0.5133 (5)	0.8317 (2)	0.0515 (12)
C15	0.8710 (3)	0.5714 (5)	0.8876 (2)	0.0607 (11)
H15A	0.8906	0.6596	0.8699	0.073*
H15B	0.8489	0.5881	0.9327	0.073*
C16	0.9848 (4)	0.4843 (5)	0.9051 (2)	0.0815 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H16A	1.0556	0.5437	0.9191	0.098*
H16B	0.9888	0.4345	0.8616	0.098*
C17	0.9890 (5)	0.3816 (7)	0.9667 (3)	0.106 (2)
H17A	1.0702	0.3424	0.9819	0.128*
H17B	0.9753	0.4311	1.0081	0.128*
C18	0.8995 (6)	0.2677 (7)	0.9479 (3)	0.110 (2)
H18A	0.9232	0.2080	0.9133	0.132*
H18B	0.9047	0.2144	0.9918	0.132*
C19	0.7500 (4)	0.3574 (4)	0.8414 (2)	0.0680 (12)
H19A	0.6693	0.3279	0.8140	0.082*
H19B	0.8084	0.3130	0.8199	0.082*
C20	0.6444 (4)	0.5822 (5)	0.8442 (2)	0.0762 (13)
H20A	0.5734	0.5419	0.8105	0.091*
H20B	0.6403	0.5600	0.8933	0.091*
C21	0.6361 (5)	0.7371 (6)	0.8352 (3)	0.102 (2)
H21A	0.7019	0.7795	0.8711	0.153*
H21B	0.5597	0.7686	0.8416	0.153*
H21C	0.6415	0.7613	0.7872	0.153*
C22	0.6905 (6)	0.1909 (6)	0.9190 (3)	0.134 (3)
H22A	0.6071	0.2201	0.9027	0.200*
H22B	0.7070	0.1568	0.9681	0.200*
H22C	0.7048	0.1193	0.8875	0.200*
C23	0.5058 (4)	0.4166 (5)	0.0171 (2)	0.0467 (12)
C24	0.34645 (13)	0.44849 (16)	-0.09893 (8)	0.0438 (11)
C25	0.30502 (17)	0.54244 (19)	-0.15519 (9)	0.0586 (13)
H25	0.3389	0.6299	-0.1517	0.070*
C26	0.21302 (16)	0.5056 (2)	-0.21660 (9)	0.0610 (13)
H26	0.1853	0.5685	-0.2542	0.073*
C27	0.16244 (15)	0.3748 (2)	-0.22176 (9)	0.0600 (13)
C28	0.20387 (17)	0.2809 (2)	-0.16550 (10)	0.0635 (13)
H28	0.1700	0.1934	-0.1689	0.076*
C29	0.29587 (14)	0.31772 (18)	-0.10409 (9)	0.0564 (13)
H29	0.3236	0.2549	-0.0664	0.068*
C30	0.66943 (14)	0.45063 (17)	0.12176 (8)	0.0514 (12)
C31	0.65863 (16)	0.4641 (2)	0.19300 (8)	0.0484 (11)
H31	0.5869	0.4986	0.2007	0.058*
C32	0.75469 (17)	0.4260 (3)	0.25286 (8)	0.0482 (11)
C33	0.85861 (16)	0.3738 (2)	0.23791 (9)	0.0550 (12)
H33	0.9244	0.3477	0.2763	0.066*
C34	0.86610 (14)	0.3595 (3)	0.16610 (10)	0.0638 (14)
H34	0.9366	0.3235	0.1574	0.077*
C35	0.77123 (13)	0.3978 (2)	0.10837 (9)	0.0619 (14)
H35	0.7767	0.3877	0.0607	0.074*
C36	0.7499 (4)	0.4493 (5)	0.3320 (2)	0.0539 (12)
C37	0.6310 (4)	0.5130 (5)	0.3376 (2)	0.0749 (14)
H37A	0.5644	0.4675	0.3027	0.090*
H37B	0.6218	0.4940	0.3859	0.090*
C38	0.6175 (5)	0.6667 (6)	0.3245 (3)	0.1006 (18)
H38A	0.5319	0.6890	0.3051	0.121*

0.6595	0.6931	0.2884	0.121*
0.6695 (7)	0.7485 (7)	0.3945 (4)	0.131 (3)
0.6449	0.8436	0.3850	0.157*
0.6320	0.7148	0.4313	0.157*
0.8052 (7)	0.7452 (8)	0.4260 (3)	0.130 (3)
0.8434	0.7944	0.3937	0.156*
0.8258	0.7924	0.4727	0.156*
0.8602 (4)	0.5406 (5)	0.3668 (2)	0.0755 (14)
0.9337	0.4855	0.3757	0.091*
0.8660	0.6123	0.3325	0.091*
0.7673 (4)	0.3108 (5)	0.3736 (2)	0.0724 (13)
0.8410	0.2676	0.3679	0.087*
0.7796	0.3296	0.4252	0.087*
0.6628 (5)	0.2097 (6)	0.3495 (3)	0.0982 (18)
0.5914	0.2466	0.3602	0.147*
0.6845	0.1245	0.3751	0.147*
0.6465	0.1941	0.2979	0.147*
0.9806 (6)	0.6096 (9)	0.4861 (3)	0.158 (4)
1.0120	0.5178	0.4946	0.236*
0.9791	0.6510	0.5317	0.236*
1.0320	0.6627	0.4637	0.236*
	0.6595 0.6695 (7) 0.6449 0.6320 0.8052 (7) 0.8434 0.8258 0.8602 (4) 0.9337 0.8660 0.7673 (4) 0.8410 0.7796 0.6628 (5) 0.5914 0.6845 0.6465 0.9806 (6) 1.0120 0.9791 1.0320	0.65950.69310.6695 (7)0.7485 (7)0.64490.84360.63200.71480.8052 (7)0.7452 (8)0.84340.79440.82580.79240.8602 (4)0.5406 (5)0.93370.48550.86600.61230.7673 (4)0.3108 (5)0.84100.26760.77960.32960.6628 (5)0.2097 (6)0.59140.24660.68450.12450.64650.19410.9806 (6)0.6096 (9)1.01200.51780.97910.65101.03200.6627	0.65950.69310.28840.6695 (7)0.7485 (7)0.3945 (4)0.64490.84360.38500.63200.71480.43130.8052 (7)0.7452 (8)0.4260 (3)0.84340.79440.39370.82580.79240.47270.8602 (4)0.5406 (5)0.3668 (2)0.93370.48550.37570.86600.61230.33250.7673 (4)0.3108 (5)0.3736 (2)0.84100.26760.36790.77960.32960.42520.6628 (5)0.2097 (6)0.3495 (3)0.59140.24660.36020.68450.12450.37510.64650.19410.29790.9806 (6)0.6096 (9)0.4861 (3)1.01200.51780.49460.97910.65100.53171.03200.66270.4637

Atomic displacement parameters (\AA^2)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F2 $0.0722 (18)$ $0.099 (3)$ $0.0657 (17)$ $0.0042 (17)$ $-0.0175 (14)$ $-0.0239 (17)$ N1 $0.067 (3)$ $0.035 (2)$ $0.047 (2)$ $-0.005 (2)$ $0.0016 (19)$ $0.0007 (19)$ N2 $0.120 (4)$ $0.083 (3)$ $0.060 (3)$ $-0.004 (3)$ $0.045 (2)$ $0.011 (2)$ N3 $0.059 (2)$ $0.041 (2)$ $0.043 (2)$ $-0.0008 (19)$ $0.0033 (18)$ $-0.0024 (19)$ N4 $0.138 (4)$ $0.102 (4)$ $0.057 (3)$ $-0.050 (3)$ $0.046 (3)$ $-0.022 (3)$ O1 $0.067 (2)$ $0.044 (2)$ $0.051 (19)$ $-0.015 (17)$ $-0.0030 (15)$ $-0.0011 (17)$ O2 $0.080 (2)$ $0.050 (2)$ $0.056 (2)$ $-0.0115 (19)$ $-0.0161 (17)$ $0.0050 (18)$ O3 $0.077 (2)$ $0.035 (2)$ $0.066 (2)$ $-0.0006 (18)$ $0.0044 (17)$ $0.0030 (17)$ O4 $0.080 (2)$ $0.038 (2)$ $0.049 (19)$ $0.007 (18)$ $-0.0150 (16)$ $0.0000 (17)$ C1 $0.055 (3)$ $0.036 (3)$ $0.049 (3)$ $-0.005 (2)$ $0.010 (2)$ $0.003 (2)$ C2 $0.050 (3)$ $0.048 (4)$ $0.049 (3)$ $-0.001 (3)$ $-0.018 (3)$ C4 $0.076 (4)$ $0.055 (3)$ $-0.001 (3)$ $-0.014 (3)$ $0.007 (3)$ C4 $0.075 (3)$ $0.058 (4)$ $0.072 (3)$ $-0.001 (3)$ $-0.014 (3)$ $0.007 (3)$ C5 $0.053 (3)$ $0.058 (4)$ $0.072 (3)$ $-0.001 (3)$ $-0.014 (3)$ $0.007 (3)$ C6 $0.068 (3)$ $0.055 (3)$	F1	0.0796 (19)	0.085 (2)	0.082 (2)	-0.0066 (17)	-0.0250 (16)	0.0215 (17)
N1 $0.067 (3)$ $0.035 (2)$ $0.047 (2)$ $-0.005 (2)$ $0.0016 (19)$ $0.0007 (19)$ N2 $0.120 (4)$ $0.083 (3)$ $0.060 (3)$ $-0.004 (3)$ $0.045 (2)$ $0.011 (2)$ N3 $0.059 (2)$ $0.041 (2)$ $0.043 (2)$ $-0.0008 (19)$ $0.0033 (18)$ $-0.0024 (19)$ N4 $0.138 (4)$ $0.102 (4)$ $0.057 (3)$ $-0.050 (3)$ $0.046 (3)$ $-0.032 (3)$ O1 $0.067 (2)$ $0.044 (2)$ $0.0513 (19)$ $-0.0015 (17)$ $-0.0030 (15)$ $-0.0011 (17)$ O2 $0.080 (2)$ $0.050 (2)$ $0.056 (2)$ $-0.0115 (19)$ $-0.0161 (17)$ $0.0030 (17)$ O4 $0.080 (2)$ $0.035 (2)$ $0.066 (2)$ $-0.0006 (18)$ $0.0044 (17)$ $0.0030 (17)$ O4 $0.080 (2)$ $0.038 (2)$ $0.0494 (19)$ $0.007 (18)$ $-0.0150 (16)$ $0.0000 (17)$ C1 $0.055 (3)$ $0.036 (3)$ $0.043 (3)$ $0.002 (3)$ $0.011 (2)$ $0.003 (2)$ C2 $0.050 (3)$ $0.043 (3)$ $0.049 (3)$ $-0.005 (2)$ $-0.007 (3)$ C4 $0.076 (4)$ $0.076 (4)$ $0.055 (3)$ $-0.001 (3)$ $-0.005 (3)$ $-0.018 (3)$ C5 $0.053 (3)$ $0.058 (4)$ $0.072 (3)$ $-0.010 (2)$ $0.019 (3)$ C6 $0.068 (3)$ $0.058 (4)$ $0.072 (3)$ $-0.001 (3)$ $-0.014 (3)$ $0.007 (3)$ C7 $0.073 (3)$ $0.052 (4)$ $0.069 (3)$ $0.000 (3)$ $0.003 (3)$ $-0.006 (3)$ C8 $0.060 (3)$ $0.043 (3)$ <td< td=""><td>F2</td><td>0.0722 (18)</td><td>0.099 (3)</td><td>0.0657 (17)</td><td>0.0042 (17)</td><td>-0.0175 (14)</td><td>-0.0239 (17)</td></td<>	F2	0.0722 (18)	0.099 (3)	0.0657 (17)	0.0042 (17)	-0.0175 (14)	-0.0239 (17)
N2 $0.120 (4)$ $0.083 (3)$ $0.060 (3)$ $-0.004 (3)$ $0.045 (2)$ $0.011 (2)$ N3 $0.059 (2)$ $0.041 (2)$ $0.043 (2)$ $-0.0008 (19)$ $0.0033 (18)$ $-0.0024 (19)$ N4 $0.138 (4)$ $0.102 (4)$ $0.057 (3)$ $-0.050 (3)$ $0.046 (3)$ $-0.032 (3)$ O1 $0.067 (2)$ $0.044 (2)$ $0.0513 (19)$ $-0.0015 (17)$ $-0.0030 (15)$ $-0.0011 (17)$ O2 $0.080 (2)$ $0.050 (2)$ $0.056 (2)$ $-0.0115 (19)$ $-0.0161 (17)$ $0.0050 (18)$ O3 $0.077 (2)$ $0.035 (2)$ $0.066 (2)$ $-0.0006 (18)$ $0.0044 (17)$ $0.0030 (17)$ O4 $0.080 (2)$ $0.038 (2)$ $0.0494 (19)$ $0.007 (18)$ $-0.0150 (16)$ $0.0000 (17)$ C1 $0.055 (3)$ $0.036 (3)$ $0.043 (3)$ $0.002 (3)$ $0.011 (2)$ $0.007 (2)$ C2 $0.050 (3)$ $0.043 (3)$ $0.049 (3)$ $-0.005 (2)$ $-0.007 (3)$ C4 $0.076 (4)$ $0.076 (4)$ $0.055 (3)$ $-0.001 (3)$ $-0.005 (3)$ $-0.018 (3)$ C5 $0.053 (3)$ $0.068 (4)$ $0.049 (3)$ $-0.012 (3)$ $-0.010 (2)$ $0.019 (3)$ C6 $0.068 (3)$ $0.058 (4)$ $0.072 (3)$ $-0.001 (3)$ $-0.014 (3)$ $0.007 (3)$ C7 $0.073 (3)$ $0.052 (4)$ $0.069 (3)$ $0.000 (3)$ $0.003 (3)$ $-0.006 (3)$ C8 $0.060 (3)$ $0.043 (3)$ $0.055 (3)$ $-0.005 (2)$ $0.011 (2)$ $0.007 (2)$ C1 $0.055 (3)$ 0	N1	0.067 (3)	0.035 (2)	0.047 (2)	-0.005 (2)	0.0016 (19)	0.0007 (19)
N3 0.059 (2) 0.041 (2) 0.043 (2) -0.0008 (19) 0.0033 (18) -0.0024 (19) N4 0.138 (4) 0.102 (4) 0.057 (3) -0.050 (3) 0.046 (3) -0.032 (3) O1 0.067 (2) 0.044 (2) 0.0513 (19) -0.0015 (17) -0.0030 (15) -0.0011 (17) O2 0.080 (2) 0.050 (2) 0.056 (2) -0.0006 (18) 0.0044 (17) 0.0030 (17) O4 0.080 (2) 0.038 (2) 0.0494 (19) 0.0007 (18) -0.0150 (16) 0.0000 (17) C1 0.055 (3) 0.036 (3) 0.049 (3) -0.005 (2) 0.010 (2) 0.003 (2) C2 0.050 (3) 0.043 (3) 0.049 (3) -0.005 (2) 0.010 (2) 0.003 (2) C3 0.055 (3) 0.056 (3) 0.059 (3) -0.015 (3) -0.007 (3) C4 0.076 (4) 0.076 (4) 0.055 (3) -0.011 (3) -0.011 (2) 0.019 (3) C5 0.053 (3) 0.058 (4) 0.049 (3) -0.011 (3) -0.011 (3) 0.007 (3)	N2	0.120 (4)	0.083 (3)	0.060 (3)	-0.004 (3)	0.045 (2)	0.011 (2)
N4 0.138 (4) 0.102 (4) 0.057 (3) -0.050 (3) 0.046 (3) -0.032 (3) O1 0.067 (2) 0.044 (2) 0.0513 (19) -0.0015 (17) -0.0030 (15) -0.0111 (17) O2 0.080 (2) 0.050 (2) 0.056 (2) -0.0115 (19) -0.0161 (17) 0.0030 (17) O4 0.080 (2) 0.035 (2) 0.066 (2) -0.0006 (18) 0.0044 (17) 0.0030 (17) O4 0.080 (2) 0.038 (2) 0.0494 (19) 0.0007 (18) -0.0150 (16) 0.0000 (17) C1 0.055 (3) 0.036 (3) 0.043 (3) 0.002 (3) 0.011 (2) 0.007 (2) C2 0.050 (3) 0.043 (3) 0.049 (3) -0.005 (2) 0.010 (2) 0.003 (2) C3 0.065 (3) 0.056 (3) 0.059 (3) 0.010 (3) -0.005 (2) -0.007 (3) C4 0.076 (4) 0.076 (4) 0.055 (3) -0.001 (3) -0.018 (3) C5 0.053 (3) 0.068 (4) 0.049 (3) -0.012 (3) -0.019 (3) C6 0.0	N3	0.059 (2)	0.041 (2)	0.043 (2)	-0.0008 (19)	0.0033 (18)	-0.0024 (19)
O10.067 (2)0.044 (2)0.0513 (19)-0.0015 (17)-0.0030 (15)-0.0011 (17)O20.080 (2)0.050 (2)0.056 (2)-0.0115 (19)-0.0161 (17)0.0050 (18)O30.077 (2)0.035 (2)0.066 (2)-0.0006 (18)0.0044 (17)0.0030 (17)O40.080 (2)0.038 (2)0.0494 (19)0.0007 (18)-0.0150 (16)0.0000 (17)C10.055 (3)0.036 (3)0.043 (3)0.002 (3)0.011 (2)0.007 (2)C20.050 (3)0.043 (3)0.049 (3)-0.005 (2)0.010 (2)0.003 (2)C30.065 (3)0.056 (3)0.059 (3)0.010 (3)-0.005 (3)-0.018 (3)C40.076 (4)0.076 (4)0.055 (3)-0.001 (3)-0.010 (2)0.019 (3)C50.053 (3)0.068 (4)0.049 (3)-0.012 (3)-0.014 (3)0.007 (3)C60.068 (3)0.052 (4)0.069 (3)0.000 (3)0.003 (3)-0.006 (3)C70.073 (3)0.052 (4)0.069 (3)0.000 (3)0.003 (3)-0.006 (3)C80.060 (3)0.043 (3)0.055 (3)-0.007 (2)0.013 (2)0.007 (2)C100.056 (3)0.043 (3)0.047 (3)0.005 (2)0.015 (2)0.007 (2)C110.056 (3)0.060 (3)0.045 (3)-0.008 (2)0.015 (2)0.007 (2)C120.055 (3)0.060 (3)0.045 (3)-0.007 (3)0.015 (2)0.007 (2)	N4	0.138 (4)	0.102 (4)	0.057 (3)	-0.050 (3)	0.046 (3)	-0.032 (3)
O2 0.080 (2) 0.050 (2) 0.056 (2) -0.0115 (19) -0.0161 (17) 0.0050 (18) O3 0.077 (2) 0.035 (2) 0.066 (2) -0.0006 (18) 0.0044 (17) 0.0030 (17) O4 0.080 (2) 0.038 (2) 0.0494 (19) 0.0007 (18) -0.0150 (16) 0.0000 (17) C1 0.055 (3) 0.036 (3) 0.043 (3) 0.002 (3) 0.011 (2) 0.007 (2) C2 0.050 (3) 0.043 (3) 0.049 (3) -0.005 (2) 0.010 (2) 0.003 (2) C3 0.065 (3) 0.056 (3) 0.059 (3) 0.010 (3) -0.005 (2) -0.007 (3) C4 0.076 (4) 0.076 (4) 0.055 (3) -0.011 (3) -0.018 (3) C5 0.053 (3) 0.068 (4) 0.049 (3) -0.012 (3) -0.010 (2) 0.019 (3) C6 0.068 (3) 0.058 (4) 0.072 (3) -0.001 (3) -0.014 (3) 0.007 (3) C7 0.073 (3) 0.052 (4) 0.069 (3) 0.000 (3) 0.003 (3) -0.006 (3) C8 <td>01</td> <td>0.067 (2)</td> <td>0.044 (2)</td> <td>0.0513 (19)</td> <td>-0.0015 (17)</td> <td>-0.0030 (15)</td> <td>-0.0011 (17)</td>	01	0.067 (2)	0.044 (2)	0.0513 (19)	-0.0015 (17)	-0.0030 (15)	-0.0011 (17)
O3 0.077 (2) 0.035 (2) 0.066 (2) -0.0006 (18) 0.0044 (17) 0.0030 (17) O4 0.080 (2) 0.038 (2) 0.0494 (19) 0.0007 (18) -0.0150 (16) 0.0000 (17) C1 0.055 (3) 0.036 (3) 0.043 (3) 0.002 (3) 0.011 (2) 0.007 (2) C2 0.050 (3) 0.043 (3) 0.049 (3) -0.005 (2) 0.010 (2) 0.003 (2) C3 0.065 (3) 0.056 (3) 0.059 (3) 0.010 (3) -0.005 (2) -0.007 (3) C4 0.076 (4) 0.076 (4) 0.055 (3) -0.001 (3) -0.005 (3) -0.018 (3) C5 0.053 (3) 0.068 (4) 0.049 (3) -0.012 (3) -0.010 (2) 0.019 (3) C6 0.058 (3) 0.058 (4) 0.072 (3) -0.001 (3) -0.014 (3) 0.007 (3) C7 0.073 (3) 0.052 (4) 0.069 (3) 0.000 (3) 0.003 (3) -0.006 (3) C8 0.060 (3) 0.043 (3) 0.055 (3) -0.007 (2) 0.013 (2) 0.007 (2) <t< td=""><td>O2</td><td>0.080 (2)</td><td>0.050 (2)</td><td>0.056 (2)</td><td>-0.0115 (19)</td><td>-0.0161 (17)</td><td>0.0050 (18)</td></t<>	O2	0.080 (2)	0.050 (2)	0.056 (2)	-0.0115 (19)	-0.0161 (17)	0.0050 (18)
040.080 (2)0.038 (2)0.0494 (19)0.0007 (18)-0.0150 (16)0.0000 (17)C10.055 (3)0.036 (3)0.043 (3)0.002 (3)0.011 (2)0.007 (2)C20.050 (3)0.043 (3)0.049 (3)-0.005 (2)0.010 (2)0.003 (2)C30.065 (3)0.056 (3)0.059 (3)0.010 (3)-0.005 (2)-0.007 (3)C40.076 (4)0.076 (4)0.055 (3)-0.001 (3)-0.005 (3)-0.018 (3)C50.053 (3)0.068 (4)0.049 (3)-0.012 (3)-0.010 (2)0.019 (3)C60.068 (3)0.058 (4)0.072 (3)-0.001 (3)-0.014 (3)0.007 (3)C70.073 (3)0.052 (4)0.069 (3)0.000 (3)0.003 (3)-0.006 (3)C80.060 (3)0.043 (3)0.055 (3)-0.007 (2)0.013 (2)0.007 (2)C100.056 (3)0.043 (3)0.047 (3)0.005 (2)0.016 (2)0.002 (2)C110.056 (3)0.060 (3)0.045 (3)-0.007 (3)0.013 (2)0.007 (2)C120.055 (3)0.073 (3)0.050 (3)-0.007 (3)0.013 (2)0.008 (3)	O3	0.077 (2)	0.035 (2)	0.066 (2)	-0.0006 (18)	0.0044 (17)	0.0030 (17)
C10.055 (3)0.036 (3)0.043 (3)0.002 (3)0.011 (2)0.007 (2)C20.050 (3)0.043 (3)0.049 (3)-0.005 (2)0.010 (2)0.003 (2)C30.065 (3)0.056 (3)0.059 (3)0.010 (3)-0.005 (2)-0.007 (3)C40.076 (4)0.076 (4)0.055 (3)-0.001 (3)-0.005 (3)-0.018 (3)C50.053 (3)0.068 (4)0.049 (3)-0.012 (3)-0.010 (2)0.019 (3)C60.068 (3)0.052 (4)0.069 (3)-0.001 (3)-0.014 (3)0.007 (3)C70.073 (3)0.052 (4)0.069 (3)0.000 (3)0.003 (3)-0.006 (3)C80.060 (3)0.043 (3)0.055 (3)-0.007 (2)0.011 (2)0.017 (2)C100.056 (3)0.043 (3)0.053 (3)-0.007 (2)0.013 (2)0.007 (2)C110.056 (3)0.060 (3)0.045 (3)-0.008 (2)0.015 (2)0.007 (2)C120.055 (3)0.073 (3)0.050 (3)0.050 (3)-0.007 (3)0.013 (2)0.008 (3)	O4	0.080 (2)	0.038 (2)	0.0494 (19)	0.0007 (18)	-0.0150 (16)	0.0000 (17)
C2 $0.050(3)$ $0.043(3)$ $0.049(3)$ $-0.005(2)$ $0.010(2)$ $0.003(2)$ C3 $0.065(3)$ $0.056(3)$ $0.059(3)$ $0.010(3)$ $-0.005(2)$ $-0.007(3)$ C4 $0.076(4)$ $0.076(4)$ $0.055(3)$ $-0.001(3)$ $-0.005(3)$ $-0.018(3)$ C5 $0.053(3)$ $0.068(4)$ $0.049(3)$ $-0.012(3)$ $-0.010(2)$ $0.019(3)$ C6 $0.068(3)$ $0.058(4)$ $0.072(3)$ $-0.001(3)$ $-0.014(3)$ $0.007(3)$ C7 $0.073(3)$ $0.052(4)$ $0.069(3)$ $0.000(3)$ $0.003(3)$ $-0.006(3)$ C8 $0.060(3)$ $0.043(3)$ $0.055(3)$ $-0.007(2)$ $0.013(2)$ $0.007(2)$ C10 $0.056(3)$ $0.043(3)$ $0.047(3)$ $0.005(2)$ $0.016(2)$ $0.002(2)$ C11 $0.056(3)$ $0.060(3)$ $0.045(3)$ $-0.007(3)$ $0.013(2)$ $0.007(2)$ C12 $0.055(3)$ $0.073(3)$ $0.050(3)$ $-0.007(3)$ $0.013(2)$ $0.008(3)$	C1	0.055 (3)	0.036 (3)	0.043 (3)	0.002 (3)	0.011 (2)	0.007 (2)
C3 $0.065(3)$ $0.056(3)$ $0.059(3)$ $0.010(3)$ $-0.005(2)$ $-0.007(3)$ C4 $0.076(4)$ $0.076(4)$ $0.055(3)$ $-0.001(3)$ $-0.005(3)$ $-0.018(3)$ C5 $0.053(3)$ $0.068(4)$ $0.049(3)$ $-0.012(3)$ $-0.010(2)$ $0.019(3)$ C6 $0.068(3)$ $0.052(4)$ $0.069(3)$ $-0.001(3)$ $-0.014(3)$ $0.007(3)$ C7 $0.073(3)$ $0.052(4)$ $0.069(3)$ $0.000(3)$ $0.003(3)$ $-0.006(3)$ C8 $0.060(3)$ $0.043(3)$ $0.055(3)$ $-0.007(2)$ $0.013(2)$ $0.010(3)$ C9 $0.050(3)$ $0.043(3)$ $0.047(3)$ $0.005(2)$ $0.016(2)$ $0.002(2)$ C10 $0.056(3)$ $0.043(3)$ $0.047(3)$ $0.005(2)$ $0.015(2)$ $0.007(2)$ C11 $0.055(3)$ $0.060(3)$ $0.045(3)$ $-0.007(3)$ $0.013(2)$ $0.008(3)$ C12 $0.055(3)$ $0.073(3)$ $0.050(3)$ $-0.007(3)$ $0.013(2)$ $0.008(3)$	C2	0.050 (3)	0.043 (3)	0.049 (3)	-0.005 (2)	0.010 (2)	0.003 (2)
C4 0.076 (4) 0.076 (4) 0.055 (3) -0.001 (3) -0.005 (3) -0.018 (3)C5 0.053 (3) 0.068 (4) 0.049 (3) -0.012 (3) -0.010 (2) 0.019 (3)C6 0.068 (3) 0.058 (4) 0.072 (3) -0.001 (3) -0.014 (3) 0.007 (3)C7 0.073 (3) 0.052 (4) 0.069 (3) 0.000 (3) 0.003 (3) -0.006 (3)C8 0.060 (3) 0.043 (3) 0.055 (3) -0.005 (2) 0.001 (3) 0.010 (3)C9 0.050 (3) 0.057 (3) 0.053 (3) -0.007 (2) 0.013 (2) 0.007 (2)C10 0.056 (3) 0.043 (3) 0.047 (3) 0.005 (2) 0.016 (2) 0.002 (2)C11 0.056 (3) 0.060 (3) 0.045 (3) -0.007 (3) 0.013 (2) 0.007 (2)C12 0.055 (3) 0.073 (3) 0.050 (3) -0.007 (3) 0.013 (2) 0.008 (3)	C3	0.065 (3)	0.056 (3)	0.059 (3)	0.010 (3)	-0.005 (2)	-0.007 (3)
C5 0.053 (3) 0.068 (4) 0.049 (3) -0.012 (3) -0.010 (2) 0.019 (3) C6 0.068 (3) 0.058 (4) 0.072 (3) -0.001 (3) -0.014 (3) 0.007 (3) C7 0.073 (3) 0.052 (4) 0.069 (3) 0.000 (3) 0.003 (3) -0.006 (3) C8 0.060 (3) 0.043 (3) 0.055 (3) -0.005 (2) 0.001 (3) 0.010 (3) C9 0.050 (3) 0.057 (3) 0.053 (3) -0.007 (2) 0.013 (2) 0.007 (2) C10 0.056 (3) 0.043 (3) 0.047 (3) 0.005 (2) 0.016 (2) 0.002 (2) C11 0.056 (3) 0.060 (3) 0.045 (3) -0.007 (3) 0.015 (2) 0.007 (2) C12 0.055 (3) 0.073 (3) 0.050 (3) -0.007 (3) 0.013 (2) 0.008 (3)	C4	0.076 (4)	0.076 (4)	0.055 (3)	-0.001 (3)	-0.005 (3)	-0.018 (3)
C6 0.068 (3) 0.058 (4) 0.072 (3) -0.001 (3) -0.014 (3) 0.007 (3) C7 0.073 (3) 0.052 (4) 0.069 (3) 0.000 (3) 0.003 (3) -0.006 (3) C8 0.060 (3) 0.043 (3) 0.055 (3) -0.005 (2) 0.001 (3) 0.010 (3) C9 0.050 (3) 0.057 (3) 0.053 (3) -0.007 (2) 0.013 (2) 0.007 (2) C10 0.056 (3) 0.043 (3) 0.047 (3) 0.005 (2) 0.016 (2) 0.002 (2) C11 0.056 (3) 0.060 (3) 0.045 (3) -0.007 (3) 0.015 (2) 0.007 (2) C12 0.055 (3) 0.073 (3) 0.050 (3) -0.007 (3) 0.013 (2) 0.008 (3)	C5	0.053 (3)	0.068 (4)	0.049 (3)	-0.012 (3)	-0.010 (2)	0.019 (3)
C7 0.073 (3) 0.052 (4) 0.069 (3) 0.000 (3) 0.003 (3) -0.006 (3) C8 0.060 (3) 0.043 (3) 0.055 (3) -0.005 (2) 0.001 (3) 0.010 (3) C9 0.050 (3) 0.057 (3) 0.053 (3) -0.007 (2) 0.013 (2) 0.007 (2) C10 0.056 (3) 0.043 (3) 0.047 (3) 0.005 (2) 0.016 (2) 0.002 (2) C11 0.056 (3) 0.060 (3) 0.045 (3) -0.008 (2) 0.015 (2) 0.007 (2) C12 0.055 (3) 0.073 (3) 0.050 (3) -0.007 (3) 0.013 (2) 0.008 (3)	C6	0.068 (3)	0.058 (4)	0.072 (3)	-0.001 (3)	-0.014 (3)	0.007 (3)
C8 0.060 (3) 0.043 (3) 0.055 (3) -0.005 (2) 0.001 (3) 0.010 (3) C9 0.050 (3) 0.057 (3) 0.053 (3) -0.007 (2) 0.013 (2) 0.007 (2) C10 0.056 (3) 0.043 (3) 0.047 (3) 0.005 (2) 0.016 (2) 0.002 (2) C11 0.056 (3) 0.060 (3) 0.045 (3) -0.008 (2) 0.015 (2) 0.007 (2) C12 0.055 (3) 0.073 (3) 0.050 (3) -0.007 (3) 0.013 (2) 0.008 (3)	C7	0.073 (3)	0.052 (4)	0.069 (3)	0.000 (3)	0.003 (3)	-0.006 (3)
C9 0.050 (3) 0.057 (3) 0.053 (3) -0.007 (2) 0.013 (2) 0.007 (2) C10 0.056 (3) 0.043 (3) 0.047 (3) 0.005 (2) 0.016 (2) 0.002 (2) C11 0.056 (3) 0.060 (3) 0.045 (3) -0.008 (2) 0.015 (2) 0.007 (2) C12 0.055 (3) 0.073 (3) 0.050 (3) -0.007 (3) 0.013 (2) 0.008 (3)	C8	0.060 (3)	0.043 (3)	0.055 (3)	-0.005 (2)	0.001 (3)	0.010 (3)
C10 0.056 (3) 0.043 (3) 0.047 (3) 0.005 (2) 0.016 (2) 0.002 (2) C11 0.056 (3) 0.060 (3) 0.045 (3) -0.008 (2) 0.015 (2) 0.007 (2) C12 0.055 (3) 0.073 (3) 0.050 (3) -0.007 (3) 0.013 (2) 0.008 (3)	С9	0.050 (3)	0.057 (3)	0.053 (3)	-0.007 (2)	0.013 (2)	0.007 (2)
C11 0.056 (3) 0.060 (3) 0.045 (3) -0.008 (2) 0.015 (2) 0.007 (2) C12 0.055 (3) 0.073 (3) 0.050 (3) -0.007 (3) 0.013 (2) 0.008 (3) C12 0.057 (2) 0.055 (3) 0.055 (3) 0.044 (2) 0.002 (2) 0.015 (2) 0.008 (3)	C10	0.056 (3)	0.043 (3)	0.047 (3)	0.005 (2)	0.016 (2)	0.002 (2)
C12 0.055 (3) 0.073 (3) 0.050 (3) -0.007 (3) 0.013 (2) 0.008 (3) C12 0.055 (3) 0.055 (3) 0.044 (2) 0.002 (2) 0.015 (2) 0.025 (2)	C11	0.056 (3)	0.060 (3)	0.045 (3)	-0.008 (2)	0.015 (2)	0.007 (2)
	C12	0.055 (3)	0.073 (3)	0.050 (3)	-0.007 (3)	0.013 (2)	0.008 (3)
C13 0.078 (3) 0.056 (3) 0.044 (3) 0.003 (3) 0.017 (3) 0.005 (2)	C13	0.078 (3)	0.056 (3)	0.044 (3)	0.003 (3)	0.017 (3)	0.005 (2)

C14	0.050 (3)	0.055 (3)	0.053 (3)	-0.006 (2)	0.019 (2)	-0.005 (2)
C15	0.067 (3)	0.078 (3)	0.040 (2)	-0.006 (3)	0.019 (2)	-0.006 (2)
C16	0.076 (3)	0.117 (4)	0.053 (3)	0.004 (3)	0.019 (2)	0.008 (3)
C17	0.109 (5)	0.149 (6)	0.063 (4)	0.036 (4)	0.026 (3)	0.026 (4)
C18	0.175 (7)	0.102 (5)	0.066 (4)	0.043 (5)	0.054 (4)	0.034 (4)
C19	0.090 (3)	0.067 (3)	0.048 (3)	-0.005 (3)	0.020 (2)	0.003 (2)
C20	0.067 (3)	0.098 (4)	0.071 (3)	0.000 (3)	0.033 (2)	-0.002 (3)
C21	0.120 (4)	0.103 (5)	0.095 (4)	0.043 (4)	0.050 (3)	0.003 (4)
C22	0.229 (7)	0.078 (4)	0.131 (5)	-0.041 (5)	0.113 (5)	-0.002 (4)
C23	0.057 (3)	0.038 (3)	0.041 (3)	0.004 (3)	0.006 (2)	0.002 (2)
C24	0.049 (3)	0.035 (3)	0.045 (2)	0.003 (2)	0.008 (2)	-0.003 (2)
C25	0.065 (3)	0.053 (3)	0.053 (3)	0.005 (3)	0.007 (2)	0.006 (2)
C26	0.060 (3)	0.073 (4)	0.043 (3)	0.008 (3)	0.003 (2)	0.009 (3)
C27	0.048 (3)	0.062 (4)	0.068 (3)	0.006 (3)	0.012 (3)	-0.005 (3)
C28	0.059 (3)	0.045 (3)	0.080 (4)	-0.005 (3)	0.007 (3)	-0.007 (3)
C29	0.063 (3)	0.044 (3)	0.052 (3)	0.003 (3)	-0.002 (2)	0.005 (2)
C30	0.065 (3)	0.038 (3)	0.046 (3)	-0.003 (2)	0.007 (2)	0.004 (2)
C31	0.048 (3)	0.045 (3)	0.050 (3)	-0.003 (2)	0.010 (2)	-0.001 (2)
C32	0.049 (3)	0.047 (3)	0.046 (3)	0.002 (2)	0.009 (2)	0.002 (2)
C33	0.045 (3)	0.067 (3)	0.047 (3)	0.008 (2)	0.001 (2)	0.007 (2)
C34	0.062 (3)	0.078 (4)	0.058 (3)	0.010 (3)	0.028 (2)	-0.013 (3)
C35	0.081 (4)	0.064 (4)	0.039 (3)	0.000 (3)	0.013 (2)	-0.010 (2)
C36	0.068 (3)	0.060 (3)	0.040 (2)	-0.007 (3)	0.024 (2)	-0.003 (2)
C37	0.099 (4)	0.076 (4)	0.062 (3)	0.005 (3)	0.044 (3)	0.005 (3)
C38	0.143 (5)	0.090 (4)	0.094 (4)	0.038 (4)	0.074 (4)	0.013 (3)
C39	0.238 (8)	0.078 (5)	0.111 (6)	0.005 (6)	0.107 (6)	-0.015 (4)
C40	0.232 (9)	0.095 (6)	0.086 (5)	-0.071 (6)	0.084 (6)	-0.046 (4)
C41	0.094 (4)	0.093 (4)	0.045 (3)	-0.018 (3)	0.028 (2)	-0.017 (2)
C42	0.096 (4)	0.074 (3)	0.052 (3)	0.011 (3)	0.028 (2)	0.008 (2)
C43	0.141 (5)	0.070 (4)	0.101 (4)	-0.017 (4)	0.062 (4)	0.010 (3)
C44	0.137 (5)	0.272 (11)	0.069 (4)	-0.103 (6)	0.036 (4)	-0.063 (5)

Geometric parameters (Å, °)

F1—C5	1.321 (3)	С19—Н19В	0.9700
F2—C27	1.329 (3)	C20—C21	1.518 (7)
N1—C1	1.336 (5)	C20—H20A	0.9700
N1—C2	1.409 (4)	С20—Н20В	0.9700
N1—H1	0.8600	C21—H21A	0.9600
N2—C19	1.469 (5)	C21—H21B	0.9600
N2—C22	1.472 (6)	C21—H21C	0.9600
N2	1.472 (6)	C22—H22A	0.9600
N3—C23	1.346 (5)	C22—H22B	0.9600
N3—C24	1.411 (4)	C22—H22C	0.9600
N3—H3A	0.8600	C24—C25	1.3900
N4—C40	1.465 (8)	C24—C29	1.3900
N4—C41	1.485 (5)	C25—C26	1.3900
N4—C44	1.491 (7)	С25—Н25	0.9300
O1—C1	1.213 (5)	C26—C27	1.3900

O2—C1	1.353 (5)	C26—H26	0.9300
O2—C8	1.382 (3)	C27—C28	1.3900
O3—C23	1.184 (5)	C28—C29	1.3900
O4—C23	1.361 (5)	C28—H28	0.9300
O4—C30	1.390 (3)	С29—Н29	0.9300
C2—C3	1.3900	C30—C35	1.3530
C2—C7	1.3900	C30—C31	1.3982
C3—C4	1.3900	C31—C32	1.3999
С3—Н3	0.9300	C31—H31	0.9300
C4—C5	1.3900	C32—C33	1.3855
C4—H4	0.9300	C32—C36	1.537 (4)
C5—C6	1.3900	C33—C34	1.3974
C6—C7	1.3900	С33—Н33	0.9300
С6—Н6	0.9300	C34—C35	1.3688
С7—Н7	0.9300	C34—H34	0.9300
C8—C9	1.3900	С35—Н35	0.9300
C8—C13	1.3900	C36—C37	1.519 (6)
C9—C10	1.3900	C36—C41	1.536 (6)
С9—Н9	0.9300	C36—C42	1.549 (6)
C10-C11	1.3900	C37—C38	1.518 (6)
C10—C14	1.548 (4)	С37—Н37А	0.9700
C11—C12	1.3900	С37—Н37В	0.9700
C11—H11	0.9300	C38—C39	1.527 (7)
C12—C13	1.3900	C38—H38A	0.9700
C12—H12	0.9300	C38—H38B	0.9700
C13—H13	0.9300	C39—C40	1.500 (8)
C14—C15	1.531 (5)	С39—Н39А	0.9700
C14—C19	1.537 (6)	С39—Н39В	0.9700
C14—C20	1.543 (5)	C40—H40A	0.9700
C15—C16	1.509 (5)	C40—H40B	0.9700
C15—H15A	0.9700	C41—H41A	0.9700
C15—H15B	0.9700	C41—H41B	0.9700
C16—C17	1.530 (7)	C42—C43	1.517 (6)
C16—H16A	0.9700	C42—H42A	0.9700
C16—H16B	0.9700	C42—H42B	0.9700
C17—C18	1.483 (8)	C43—H43A	0.9600
С17—Н17А	0.9700	C43—H43B	0.9600
C17—H17B	0.9700	C43—H43C	0.9600
C18—H18A	0.9700	C44—H44A	0.9600
C18—H18B	0.9700	C44—H44B	0.9600
C19—H19A	0.9700	C44—H44C	0.9600
C1 - N1 - C2	127 6 (4)	H21B-C21-H21C	109 5
C1 - N1 - H1	116.2	N_2 C_2^2 H_2^2 A	109.5
C2—N1—H1	116.2	N2—C22—H22B	109.5
C19—N2—C22	109.8 (4)	H22A—C22—H22B	109.5
C19 - N2 - C18	111 4 (4)	N2—C22—H22C	109.5
$C_{22} = N_{2} = C_{18}$	110.0 (5)	H22A—C22—H22C	109.5
C23—N3—C24	127 4 (4)	H22B-C22-H22C	109.5
C23—N3—H3A	116.3	O3—C23—N3	129.1 (5)
			(0)

C24—N3—H3A	116.3	O3—C23—O4	124.5 (4)
C40—N4—C41	112.3 (5)	N3—C23—O4	106.4 (4)
C40—N4—C44	109.2 (5)	C25—C24—C29	120.0
C41—N4—C44	108.0 (5)	C25—C24—N3	116.98 (16)
C1—O2—C8	118.0 (3)	C29—C24—N3	123.00 (16)
C23—O4—C30	117.7 (3)	C26—C25—C24	120.0
O1-C1-N1	127.6 (4)	С26—С25—Н25	120.0
O1—C1—O2	123.9 (5)	С24—С25—Н25	120.0
N1—C1—O2	108.5 (4)	C25—C26—C27	120.0
C3—C2—C7	120.0	С25—С26—Н26	120.0
C3—C2—N1	116.3 (2)	С27—С26—Н26	120.0
C7—C2—N1	123.6 (2)	F2—C27—C28	120.20 (19)
C2—C3—C4	120.0	F2—C27—C26	119.78 (19)
С2—С3—Н3	120.0	C28—C27—C26	120.0
С4—С3—Н3	120.0	C27—C28—C29	120.0
C5—C4—C3	120.0	C27—C28—H28	120.0
С5—С4—Н4	120.0	С29—С28—Н28	120.0
С3—С4—Н4	120.0	C28—C29—C24	120.0
F1—C5—C6	120.5 (3)	С28—С29—Н29	120.0
F1—C5—C4	119.5 (3)	С24—С29—Н29	120.0
C6—C5—C4	120.0	C35—C30—O4	121.16 (14)
C7—C6—C5	120.0	C35—C30—C31	121.3
С7—С6—Н6	120.0	O4—C30—C31	117.23 (14)
С5—С6—Н6	120.0	C30—C31—C32	120.7
C6—C7—C2	120.0	С30—С31—Н31	119.7
С6—С7—Н7	120.0	C32—C31—H31	119.7
С2—С7—Н7	120.0	C33—C32—C31	117.0
O2—C8—C9	118.5 (2)	C33—C32—C36	120.75 (19)
O2—C8—C13	121.1 (2)	C31—C32—C36	122.1 (2)
C9—C8—C13	120.0	C32—C33—C34	121.1
C8—C9—C10	120.0	С32—С33—Н33	119.5
С8—С9—Н9	120.0	С34—С33—Н33	119.5
С10—С9—Н9	120.0	C35—C34—C33	120.9
C9—C10—C11	120.0	С35—С34—Н34	119.5
C9—C10—C14	118.1 (2)	С33—С34—Н34	119.5
C11—C10—C14	121.7 (2)	C30—C35—C34	119.0
C12—C11—C10	120.0	С30—С35—Н35	120.5
C12—C11—H11	120.0	С34—С35—Н35	120.5
C10—C11—H11	120.0	C37—C36—C32	113.3 (3)
C11—C12—C13	120.0	C37—C36—C41	112.0 (4)
C11—C12—H12	120.0	C32—C36—C41	105.5 (3)
C13—C12—H12	120.0	C37—C36—C42	108.3 (3)
C12—C13—C8	120.0	C32—C36—C42	109.8 (3)
C12—C13—H13	120.0	C41—C36—C42	107.8 (4)
С8—С13—Н13	120.0	C38—C37—C36	116.4 (4)
C15—C14—C19	110.6 (4)	С38—С37—Н37А	108.2
C15—C14—C20	108.3 (3)	С36—С37—Н37А	108.2
C19—C14—C20	108.9 (4)	С38—С37—Н37В	108.2
C15-C14-C10	112.4 (3)	С36—С37—Н37В	108.2

C19—C14—C10	106.1 (3)	Н37А—С37—Н37В	107.4
C20-C14-C10	110.6 (3)	C37—C38—C39	111.9 (5)
C16-C15-C14	116.8 (4)	С37—С38—Н38А	109.2
С16—С15—Н15А	108.1	С39—С38—Н38А	109.2
C14—C15—H15A	108.1	С37—С38—Н38В	109.2
C16-C15-H15B	108.1	С39—С38—Н38В	109.2
C14—C15—H15B	108.1	H38A—C38—H38B	107.9
H15A—C15—H15B	107.3	C40—C39—C38	117.0 (5)
C15—C16—C17	112.6 (4)	С40—С39—Н39А	108.0
C15—C16—H16A	109.1	С38—С39—Н39А	108.0
C17—C16—H16A	109.1	С40—С39—Н39В	108.1
C15-C16-H16B	109.1	С38—С39—Н39В	108.1
C17—C16—H16B	109.1	Н39А—С39—Н39В	107.3
H16A—C16—H16B	107.8	N4—C40—C39	113.0 (6)
C18—C17—C16	115.2 (4)	N4	109.0
C18—C17—H17A	108.5	С39—С40—Н40А	109.0
С16—С17—Н17А	108.5	N4C40H40B	109.0
С18—С17—Н17В	108.5	С39—С40—Н40В	109.0
С16—С17—Н17В	108.5	H40A—C40—H40B	107.8
H17A—C17—H17B	107.5	N4—C41—C36	113.8 (3)
N2—C18—C17	116.1 (6)	N4—C41—H41A	108.8
N2	108.3	C36—C41—H41A	108.8
C17—C18—H18A	108.3	N4—C41—H41B	108.8
N2	108.3	C36—C41—H41B	108.8
C17—C18—H18B	108.3	H41A—C41—H41B	107.7
H18A—C18—H18B	107.4	C43—C42—C36	115.3 (4)
N2-C19-C14	116.2 (4)	C43—C42—H42A	108.4
N2-C19-H19A	108.2	C36—C42—H42A	108.4
C14—C19—H19A	108.2	C43—C42—H42B	108.4
N2—C19—H19B	108.2	C36—C42—H42B	108.4
C14—C19—H19B	108.2	H42A—C42—H42B	107.5
H19A—C19—H19B	107.4	C42—C43—H43A	109.5
C21—C20—C14	116.3 (4)	C42—C43—H43B	109.5
C21—C20—H20A	108.2	H43A—C43—H43B	109.5
C14—C20—H20A	108.2	С42—С43—Н43С	109.5
C21—C20—H20B	108.2	H43A—C43—H43C	109.5
C14—C20—H20B	108.2	H43B—C43—H43C	109.5
H20A—C20—H20B	107.4	N4—C44—H44A	109.5
C20—C21—H21A	109.5	N4—C44—H44B	109.5
C20—C21—H21B	109.5	H44A—C44—H44B	109.5
H21A—C21—H21B	109.5	N4—C44—H44C	109.5
C20—C21—H21C	109.5	H44A—C44—H44C	109.5
H21A—C21—H21C	109.5	H44B—C44—H44C	109.5
C2—N1—C1—O1	1.0 (7)	C24—N3—C23—O3	1.0 (7)
C2—N1—C1—O2	179.4 (3)	C24—N3—C23—O4	-176.9 (3)
C8—O2—C1—O1	-8.6 (6)	C30—O4—C23—O3	12.0 (6)
C8—O2—C1—N1	172.8 (3)	C30—O4—C23—N3	-169.9 (3)
C1—N1—C2—C3	161.6 (3)	C23—N3—C24—C25	-167.6 (3)
C1—N1—C2—C7	-19.3 (5)	C23—N3—C24—C29	14.2 (4)

C7—C2—C3—C4	0.0	C29—C24—C25—C26	0.0
N1—C2—C3—C4	179.1 (3)	N3—C24—C25—C26	-178.30 (16)
C2—C3—C4—C5	0.0	C24—C25—C26—C27	0.0
C3—C4—C5—F1	-179.8 (3)	C25—C26—C27—F2	178.44 (18)
C3—C4—C5—C6	0.0	C25—C26—C27—C28	0.0
F1—C5—C6—C7	179.8 (3)	F2—C27—C28—C29	-178.43 (18)
C4—C5—C6—C7	0.0	C26—C27—C28—C29	0.0
C5—C6—C7—C2	0.0	C27—C28—C29—C24	0.0
C3—C2—C7—C6	0.0	C25—C24—C29—C28	0.0
N1—C2—C7—C6	-179.1 (3)	N3—C24—C29—C28	178.19 (17)
C1—O2—C8—C9	112.9 (3)	C23—O4—C30—C35	72.2 (3)
C1—O2—C8—C13	-74.7 (4)	C23—O4—C30—C31	-113.7 (3)
O2—C8—C9—C10	172.4 (3)	C35—C30—C31—C32	1.6
C13—C8—C9—C10	0.0	O4—C30—C31—C32	-172.52 (15)
C8—C9—C10—C11	0.0	C30—C31—C32—C33	-0.8
C8—C9—C10—C14	-174.6 (3)	C30—C31—C32—C36	175.4 (3)
C9—C10—C11—C12	0.0	C31—C32—C33—C34	-0.2
C14—C10—C11—C12	174.4 (3)	C36—C32—C33—C34	-176.4 (2)
C10-C11-C12-C13	0.0	C32—C33—C34—C35	0.5
C11—C12—C13—C8	0.0	O4—C30—C35—C34	172.55 (16)
O2—C8—C13—C12	-172.2 (3)	C31—C30—C35—C34	-1.3
C9—C8—C13—C12	0.0	C33—C34—C35—C30	0.3
C9—C10—C14—C15	-176.6 (3)	C33—C32—C36—C37	177.4 (3)
C11—C10—C14—C15	8.9 (4)	C31—C32—C36—C37	1.5 (4)
C9—C10—C14—C19	62.5 (4)	C33—C32—C36—C41	54.6 (4)
C11—C10—C14—C19	-112.0 (3)	C31—C32—C36—C41	-121.4 (3)
C9—C10—C14—C20	-55.4 (4)	C33—C32—C36—C42	-61.4 (4)
C11—C10—C14—C20	130.1 (3)	C31—C32—C36—C42	122.7 (3)
C19—C14—C15—C16	38.0 (5)	C32—C36—C37—C38	-78.6 (5)
C20-C14-C15-C16	157.2 (4)	C41—C36—C37—C38	40.5 (5)
C10-C14-C15-C16	-80.3 (5)	C42—C36—C37—C38	159.3 (4)
C14—C15—C16—C17	-87.6 (5)	C36—C37—C38—C39	-87.5 (5)
C15-C16-C17-C18	69.6 (6)	C37—C38—C39—C40	68.5 (8)
C19—N2—C18—C17	72.7 (6)	C41—N4—C40—C39	75.8 (6)
C22—N2—C18—C17	-165.2 (4)	C44—N4—C40—C39	-164.4 (5)
C16-C17-C18-N2	-52.7 (7)	C38—C39—C40—N4	-52.7 (8)
C22—N2—C19—C14	143.9 (4)	C40—N4—C41—C36	-95.9 (6)
C18—N2—C19—C14	-94.0 (5)	C44—N4—C41—C36	143.6 (5)
C15-C14-C19-N2	44.3 (5)	C37—C36—C41—N4	41.0 (5)
C20-C14-C19-N2	-74.6 (5)	C32—C36—C41—N4	164.6 (4)
C10-C14-C19-N2	166.4 (4)	C42—C36—C41—N4	-78.1 (5)
C15-C14-C20-C21	61.0 (5)	C37—C36—C42—C43	55.2 (5)
C19—C14—C20—C21	-178.7 (4)	C32—C36—C42—C43	-68.9 (5)
C10-C14-C20-C21	-62.5 (5)	C41—C36—C42—C43	176.6 (4)
Hydrogen-bond geometry (Å, °)			
D-H···A	D—1	Н Н…А	D···A D—H···A
			_ 11 11

0.86

2.15 3.007 (5)

177

N3—H3A…O3ⁱ

N1—H1···O1 ⁱⁱ	0.86	2.16	3.002 (5)	167
Symmetry codes: (i) $-x+1$, $y+1/2$, $-z$; (ii) $-x+1$,	y-1/2, -z+1.			

Fig. 1

